

Test report No. : 12903635H-A
Page : 1 of 26
Issued date : June 26, 2019

RADIO TEST REPORT

Test Report No.: 12903635H-A

Applicant : OMRON HEALTHCARE Co., Ltd.

Type of Equipment : BLOOD PRESSURE MONITOR

Model No. : HEM-7361T

Test standard : EN 300 328 V2.1.1

Test Result : Complied (Refer to SECTION 3.2)

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the above standard(s).
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 6. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 7. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- 8. The information provided from the customer for this report is identified in SECTION 1.

Date of test: June 13 to 17, 2019

Representative test engineer:

Takafumi Noguchi Engineer

Consumer Technology Division

Approved by:

Takayuki Shimada Leader

Consumer Technology Division

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may

refer to the WEB address,

http://japan.ul.com/resources/emc_accredited/

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.

There is no testing item of "Non-accreditation".

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12903635H-A Page : 2 of 26 Issued date : June 26, 2019

REVISION HISTORY

Original Test Report No.: 12903635H-A

Revision	Test report No.	Date	Page revised	Contents
- (Original)	12903635H-A	June 26, 2019	-	-

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12903635H-A Page : 3 of 26 Issued date : June 26, 2019

CONTENTS PAGE SECTION 1: Equipment under test (E.U.T.)4 **SECTION 2:** Test specification, procedures & results.......5 **SECTION 3: SECTION 4:** Operation of E.U.T. during testing......9 **SECTION 5:** Transmitter unwanted emissions in the spurious domain and Receiver spurious **SECTION 6:** Receiver Blocking 21 APPENDIX 2: Test instruments ________23 Radiated emission 24 Receiver Blocking 26

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12903635H-A
Page : 4 of 26
Issued date : June 26, 2019

SECTION 1: Customer information

Company Name : OMRON HEALTHCARE Co., Ltd.

Address : 53, Kunotsubo, Terado-cho, Muko, Kyoto, 617-0002 JAPAN Address : 53, Kunotsubo, Terado-cho, Muko, KYOTO, 617-0002 Japan

Telephone Number : +81-75-925-2045 Facsimile Number : +81-75-925-2046

The information provided from the customer is as follows;

- Applicant, Type of Equipment, Model No. on the cover and other relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (E.U.T.)
- SECTION 4: Operation of E.U.T. during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : BLOOD PRESSURE MONITOR

Model No. : HEM-7361T

Serial No. : Refer to SECTION 4, SECTION 4.2

Rating : DC 6.0 V (Battery)

AC 100 V to 240 V / 50 Hz (AC Adapter)

Receipt Date of Sample : June 12, 2019

(Information from test lab.)

Country of Mass-production : China, Vietnam, and Japan Condition of EUT : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab.

2.2 Product Description

Model: HEM-7361T (referred to as the EUT in this report) is a BLOOD PRESSURE MONITOR.

Variant models: HEM-7361T-E, HEM-7361T-D, HEM-7361T-ALRU, JPN717T, JPN710T

The differences among these models are as follow;

- the place of destination
- the existence or non-existence of backlight on the LCD

Radio Specification

Bluetooth Low Energy

Equipment Type : Transceiver

Frequency of Operation : 2402 MHz - 2480 MHz

Type of Modulation : GFSK
Antenna Type : Chip Antenna
Antenna Gain : 5.05 dBi

Operating Temperature : +10 deg. C to +40 deg. C

Receiver Category : Category 2

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12903635H-A Page : 5 of 26 Issued date : June 26, 2019

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Radio : EN 300 328 V2.1.1

Title : Wideband transmission systems; Data transmission equipment operating in the 2.4GHz ISM

band and using wide band modulation techniques;

Harmonised Standard covering the essential requirements of article 3.2 of Directive

2014/53/EU

Purpose of test : Compliance with the harmonized RE directive 2014/53/EU.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12903635H-A Page : 6 of 26 Issued date : June 26, 2019

3.2 Procedures and results

Item	Test Procedure	Limit	Test method	Worst margin	Results	Remarks
RF output power	Clause 5.4.2	Clause 4.3.2.2	Conducted	-	Complied a)	-
Power Spectral Density	Clause 5.4.3	Clause 4.3.2.3	Conducted	-	Complied b)	-
Duty cycle, Tx-sequence, Tx-gap	Clause 5.4.2	Clause 4.3.2.4	Conducted	-	N/A	*1)
Medium Utilisation (MU) factor	Clause 5.4.2	Clause 4.3.2.5	Conducted	-	N/A	*1)
Adaptivity (adaptive equipment using modulations other than FHSS)	Clause 5.4.6	Clause 4.3.2.6	Conducted	-	N/A	*2)
Occupied Channel Bandwidth	Clause 5.4.7	Clause 4.3.2.7	Conducted	-	Complied c)	-
Transmitter unwanted emissions in the out-of-band domain	Clause 5.4.8	Clause 4.3.2.8	Conducted	-	Complied d)	-
Transmitter unwanted emissions in the spurious domain	Clause 5.4.9	Clause 4.3.2.9	Radiated	12.7 dB 4804.00 MHz, Vertical	Complied e)	-
Receiver Spurious emissions	Clause 5.4.10	Clause 4.3.2.10	Radiated	10.0 dB 52.98 MHz Vertical	Complied f)	-
Transmitter unwanted emissions in the spurious domain	Clause 5.4.9	Clause 4.3.2.9	Conducted	-	N/A	*3)
Receiver Spurious emissions	Clause 5.4.10	Clause 4.3.2.10	Conducted	-	N/A	*3)
Receiver Blocking	Clause 5.4.11	Clause 4.3.2.11	Conducted	-	Complied g)	-
Geo-location capability	-	Clause 4.3.2.12	-	-	N/A	*4)

Note: UL Japan, Inc.'s EMI Work Procedure 13-EM-W0420.

- *1) The test is not applicable since the EUT is an adaptive equipment and does not operate in a non-adaptive mode.
- *2) The test is not applicable since the RF output power of the EUT is less than 10 dBm (e.i.r.p.).
- *3) The EUT does not have antenna connector.
- *4) The EUT does not have Geo-location capability.
- a) Refer to APPENDIX 1 (data of RF Output Power)
- b) Refer to APPENDIX 1 (data of Power Spectral Density)
- c) Refer to APPENDIX 1 (data of Occupied Channel Bandwidth)
- d) Refer to APPENDIX 1 (data of Transmitter unwanted emissions in the out-of-band domain)
- e) Refer to APPENDIX 1 (data of Transmitter unwanted emissions in the spurious domain (Radiated))
- f) Refer to APPENDIX 1 (data of Receiver spurious emissions (Radiated))
- g) Refer to APPENDIX 1 (data of Receiver Blocking)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

3.3 Additions or deviations to standards

No addition, exclusion nor deviation has been made from the standard.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12903635H-A Page : 7 of 26 Issued date : June 26, 2019

3.4 Uncertainty

Although this standard determines only the limit value of uncertainty, there is no applicable rule of uncertainty in this. Therefore, the results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2. Is EMC Lab.

		Required	Calculated
Item	Unit	Uncertainty	Uncertainty
		(+/-)	(+/-)
Occupied Channel Bandwidth	%	5	0.96
RF output power, conducted	dB	1.5	1.3
Power Spectral Density, conducted	dB	3	1.9
Unwanted Emissions, conducted	dB	3	2.3
All emissions, radiated	dB	6	5.6
Temperature	deg. C	3	0.975
Supply voltages	%	3	1.6
Time	%	5	0.10
Receiver Blocking	dB	Not Defined *1)	1.1

^{*1)} Not Defined: Although this test item is not defined in the standard, it is listed as reference.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Measurement uncertainties of UL Japan, Inc. do not exceed the uncertainties required in the standard.

Test report No. : 12903635H-A Page : 8 of 26 Issued date : June 26, 2019

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

NVLAP Lab. code: 200572-0

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	M aximum measurement
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	distance 10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 m x 2.0 m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12903635H-A Page : 9 of 26 Issued date : June 26, 2019

SECTION 4: Operation of E.U.T. during testing

4.1 **Operating Mode(s)**

Mode	Remarks*
Bluetooth (BT) Low Energy (LE)	Continuous Tx (Tx), PN9
	Continuous Rx (Rx)

^{*}Transmitting duty was 100 % on all tests.

- Power Setting: 0dBm

- Software: Serial Command Explorer 2 Ver.2.3.4.9

This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

Details of Operating Mode(s)

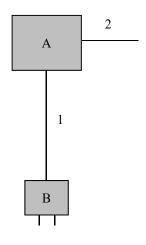
Bluetooth Low Energy [DSSS and other forms of modulation]

Test item	Operating mode	Tested frequency
RF output power,	BT LE Tx	2402 MHz
Power Spectral Density		2440 MHz
		2480 MHz
Occupied channel bandwidth,	BT LE Tx	2402 MHz
Transmitter unwanted emissions in the		2480 MHz
out-of-band domain,		
Transmitter unwanted emissions in the		
spurious domain (Radiated)		
Receiver spurious emissions (Radiated)	BT LE Rx	2402 MHz
		2480 MHz
Receiver blocking	Communication Bluetooth Low Energy	2402 MHz
	(Direct test mode)	2480 MHz

Extreme test condition			
Temperature	+10 deg. C to +40 deg. C		
Voltage	Vnom: DC 6.0 V: operating voltage range of EUT *		

^{*}The RF module is constantly provided with the stable voltage regardless of input voltage, so the testing was performed with DC 6.0 V only.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN


^{*}The worst condition was determined based on the test result of RF Output power.

^{*}EUT has the power settings by the software as follows;

Test report No. : 12903635H-A Page : 10 of 26 Issued date : June 26, 2019

4.2 Configuration and peripherals

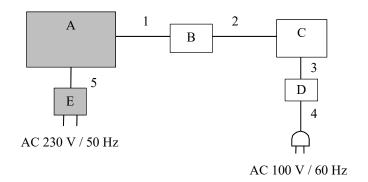
[Radiated emission test]

AC 230 V / 50 Hz

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	BLOOD PRESSURE	HEM-7361T	ES1812000079V	OMRON HEALTHCARE	EUT
	MONITOR			Co., Ltd.	
В	AC Adapter	HHP-AM01	852A	OMRON HEALTHCARE	EUT
				Co., Ltd.	

List of cables used


No.	Name	Length (m)	Shield		Remark
			Cable	Connector	
1	DC Cable	1.5	Unshielded	Unshielded	-
2	Signal Cable	0.2	Unshielded	Unshielded	_

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

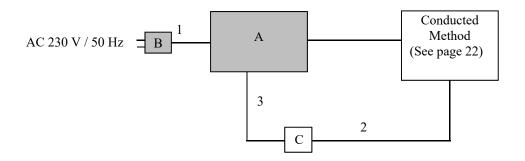
Test report No. : 12903635H-A Page : 11 of 26 Issued date : June 26, 2019

[Antenna Terminal Conducted test]

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support equipment

	or product the support equipment					
No.	Item	Model number	Serial number	Manufacturer	Remarks	
A	BLOOD PRESSURE	HEM-7361T	ES1812000080V	OMRON HEALTHCARE	EUT	
	MONITOR			Co., Ltd.		
В	Jig	-	-	-	-	
С	Laptop PC	PC-BL530VH6B	99185918A	NEC	-	
D	AC Adapter	ADP-60NH	9903033DD	NEC	-	
Е	AC Adapter	HHP-AM01	852A	OMRON HEALTHCARE	EUT	
	_			Co., Ltd.		


List of cables used

No.	Name	Length (m)	S	Shield		
			Cable	Connector		
1	Signal Cable	1.0	Unshielded	Unshielded	-	
2	USB Cable	0.3	Shielded	Shielded	-	
3	DC Cable	1.8	Unshielded	Unshielded	-	
4	AC Cable	1.0	Unshielded	Unshielded	-	
5	DC Cable	1.5	Unshielded	Unshielded	-	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12903635H-A Page : 12 of 26 Issued date : June 26, 2019

[Receiver Blocking tests]

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support equipment

	escription of EO 1 and Support equipment						
No.	Item	Model number	Serial number	Manufacturer	Remark		
Α	BLOOD PRESSURE	HEM-7361T	ES1812000080V	OMRON HEALTHCARE	EUT		
	MONITOR			Co., Ltd.			
В	AC Adapter	HHP-AM01	852A	OMRON HEALTHCARE	EUT		
				Co., Ltd.			
С	Jig	-	-	-	-		

List of cables used

No.	Name	Length (m)	Shi	Remarks	
			Cable		
1	DC Cable	1.5	Unshielded	Unshielded	-
2	USB Cable	1.0	Shielded	Shielded	-
3	Signal Cable	0.2	Unshielded	Unshielded	-

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12903635H-A Page : 13 of 26 Issued date : June 26, 2019

SECTION 5: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Instrument used	Remark
RF Output Power	Power Meter	Normal and Extreme conditions
Power Spectral Density	Spectrum Analyzer	Option 1
-		Normal condition
Occupied Channel	Spectrum Analyzer	Normal condition
Bandwidth		
Transmitter unwanted	Spectrum Analyzer	Normal conditions
emissions in the out-of band		
domain		- Detector mode: RMS
		- Trace: Max Hold
		- Band power was used on behalf of the time domain power function.
		- Filter mode: Gaussian Filter
		Since the data in this test report has enough margin
Receiver Blocking	Spectrum Analyzer	Normal condition

The test results are rounded off to two decimals place, so some differences might be observed.

The equipment and cables were not used for factor 0.0 dB of the data sheets.

Test data : APPENDIX

Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12903635H-A
Page : 14 of 26
Issued date : June 26, 2019

SECTION 6: Transmitter unwanted emissions in the spurious domain and Receiver spurious emissions (Radiated)

Test Procedure

1) EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength intensity has been measured in semi anechoic chamber at a distance of 3 m.

The measuring antenna height was varied between 1 m to 4 m and the turn table was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization.

2) Exchanged the EUT to the Substitution Antenna, the measurement was set for the same height 1.5 m as the EUT. The frequency below 1 GHz of the Substitution Antenna was used the Half wave dipole Antenna, which was tuned the measured frequency in 1).

The frequency above 1 GHz of the Substitution Antenna was used Horn Antenna.

The Substitution Antenna was connected to the Signal Generator, and the polarized electromagnetic radiation of the Substitution Antenna was matched with the one of the measuring Antenna, which was set with the Signal Generator to the measured frequency in 1). Then, we set with the Output power (CW) of the Signal Generator where the measuring electromagnetic field strength is equal to the measured value in 1) by means of varying the measuring antenna height between 1 m to 4 m to obtain maximum receiving level. Its Output power of Signal Generator was recorded.

3) Below 1 GHz:

Effective radiated power was calculated by subtracting the cable loss and the attenuator loss connected between the Signal Generator and the Substitution Antenna from the Output power of the Signal Generator recorded in 2).

For the usage of the Antenna except for the Half wave dipole Antenna for the Substitution Antenna, the Effective radiated power was calculated by compensating the finite difference in the Antenna gain of the Half wave dipole Antenna, and Substitution Antenna.

Above 1 GHz:

Equivalent isotropic radiated power was calculated by subtracting the cable loss and the attenuator loss connected between the signal generator and the substitution antenna from the output power of the signal generator recorded in 2).

For the usage of the antenna (horn antenna) for the substitution antenna, the equivalent isotropic radiated power was calculated by compensating the finite substitution antenna.

Pre-check scan setting

Frequency	Below 1 GHz	Above 1 GHz
Instrument used	Spectrum Analyzer	Spectrum Analyzer
IF Bandwidth	Peak, RBW: 100 kHz / VBW: 300 kHz	Peak, RBW: 1 MHz / VBW: 3 MHz
Trace mode	Max hold	Max hold

Measured setting

Frequency	Below 1 GHz	Above 1 GHz
Instrument used	Spectrum Analyzer	Spectrum Analyzer
IF Bandwidth	RMS, RBW: 100 kHz / VBW: 300 kHz	RMS, RBW: 1 MHz / VBW: 3 MHz
Span / Sweep time	Zero / 120 % of detected burst	Zero / 120 % of detected burst
Trace mode	Clear Write (band power)	Clear Write (band power)

⁻ The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results are rounded off to one decimal place, so some differences might be observed.

Test data : APPENDIX

Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12903635H-A
Page : 15 of 26
Issued date : June 26, 2019

APPENDIX 1: Test data

RF Output Power

Report No. 12903635H

Test place Ise EMC Lab. No.6 Measurement Room

Date June 13, 2019
Temperature / Humidity 23 deg. C / 45 % RH
Engineer Takumi Shimada
Mode Tx BT LE

BT LE

Test Co	ondition	Freq.	P/M (AV)	Cable	Atten.	Antenna	Result	Limit	Margin
Temp.	Volt.		Reading Loss		Loss	Gain			
		[MHz]	[dBm]	[dB]	[dB]	[dBi]	[dBm]	[dBm]	[dB]
		2402.0	-11.67	1.03	9.99	5.05	4.40	20.00	15.60
nom	nom	2440.0	-11.59	1.04	9.99	5.05	4.49	20.00	15.51
		2480.0	-11.47	1.05	9.99	5.05	4.62	20.00	15.38
		2402.0	-11.42	1.03	9.99	5.05	4.65	20.00	15.35
min	nom	2440.0	-11.35	1.04	9.99	5.05	4.73	20.00	15.27
		2480.0	-11.19	1.05	9.99	5.05	4.90	20.00	15.10
		2402.0	-11.88	1.03	9.99	5.05	4.19	20.00	15.81
max	nom	2440.0	-11.82	1.04	9.99	5.05	4.26	20.00	15.74
		2480.0	-11.77	1.05	9.99	5.05	4.32	20.00	15.68

 $Result = Reading + Cable\ Loss\ (including\ the\ cable(s)\ customer\ supplied) + Attenuator\ Loss + Antenna\ Gain$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12903635H-A
Page : 16 of 26
Issued date : June 26, 2019

Power Spectral Density

Report No. 12903635H

Test place Ise EMC Lab. No.6 Measurement Room

Date June 13, 2019
Temperature / Humidity 23 deg. C / 45 % RH
Engineer Takumi Shimada
Mode Tx BT LE

BT LE

Test C	ondition	Ch	S/A	S/A	RF Output	Result	Limit	Margin
Temp.	Volt. Freq.		Maximum	Total Power	Power			
			Reading	Reading				
		[MHz]	[dBm/MHz]	[dBm]	[dBm]	[dBm/MHz]	[dBm/MHz]	[dB]
		2402.00	-10.91	-10.85	4.40	4.34	10.00	5.66
nom	nom	2440.00	-11.18	-11.12	4.49	4.43	10.00	5.57
			-11.05	-10.99	4.62	4.56	10.00	5.44

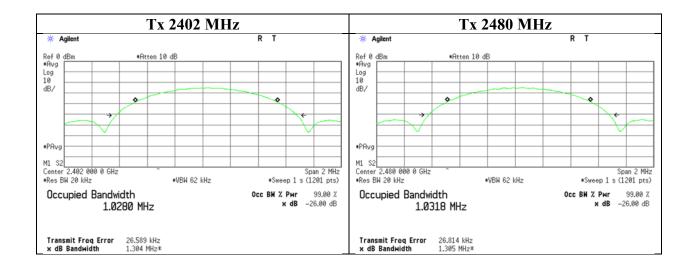
 $Result \left[dBm/MHz\right] = S/A \ M \ aximum \ Reading \left[dBm/MHz\right] - S/A \ Total \ Power \ Reading \left[dBm] \ (*1) + RF \ Output \ Power \ [dBm] \ (*2) + RF \ Output \ Power \ [dBm] \ (*2) + RF \ Output \ Power \ [dBm] \ (*2) + RF \ Output \ Power \ [dBm] \ (*2) + RF \ Output \ Power \ [dBm] \ (*2) + RF \ Output \ Power \ [dBm] \ (*2) + RF \ Output \ Power \ [dBm] \ (*2) + RF \ Output \ Power \ [dBm] \ (*3) + RF \ Output \ Power \ [dBm] \ (*4) + RF \ Output \ Power \ Po$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^(*1) Integrated value of 2400 MHz to 2483.5 MHz

^(*2) Refer to RF Output Power

Test report No. : 12903635H-A
Page : 17 of 26
Issued date : June 26, 2019


Occupied Channel Bandwidth

Report No. 12903635H

Test place Ise EMC Lab. No.6 Measurement Room

Date June 13, 2019
Temperature / Humidity 23 deg. C / 45 % RH
Engineer Takumi Shimada
Mode Tx BT LE

Frequency	Bandwidth	Result	Limit
[MHz]	[MHz]	[MHz]	[MHz]
2402	1.0280	2401.4860	> 2400
2480	1.0318	2480.5159	< 2483.5

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12903635H-A
Page : 18 of 26
Issued date : June 26, 2019

Transmitter unwanted emissions in the out-of-band domain

Report No. 12903635H

Test place Ise EMC Lab. No.6 Measurement Room

Date June 13, 2019
Temperature / Humidity 23 deg. C / 45 % RH
Engineer Takumi Shimada
Mode Tx BT LE

BT LE

Frequency	S/A (AV)	Cable	Atten.	Antenna	Result	Limit	Margin	Remarks
	Reading	Loss	Loss	Gain				
[MHz]	[dBm/MHz]	[dB]	[dB]	[dBi]	[dBm/MHz]	[dBm/MHz]	[dB]	
2398.5	-70.85	1.03	9.99	5.05	-54.78	-20.00	34.78	Lowest ch 2400 MHz - 2 BW
2399.5	-68.30	1.03	9.99	5.05	-52.23	-10.00	42.23	Lowest ch 2400 MHz - BW
2484.0	-72.24	1.05	9.99	5.05	-56.15	-10.00	46.15	Highest ch 2483.5 MHz + BW
2485.1	-72.81	1.05	9.99	5.05	-56.72	-20.00	36.72	Highest ch 2483.5 MHz + 2 BW

 $Result = Reading + Cable \ Loss \ (including \ the \ cable(s) \ customer \ supplied) + Attenuator \ Loss + Antenna \ Gain$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Above test result was maximum value on each 1 BW.

Test report No. : 12903635H-A
Page : 19 of 26
Issued date : June 26, 2019

Transmitter unwanted emissions in the spurious domain (Radiated)

Report No. 12903635H Test place Ise EMC Lab.

Semi Anechoic Chamber No.1

Date June 14, 2019
Temperature / Humidity 24 deg. C / 67 % RH
Engineer Takafumi Noguchi
Mode Tx BT LE

2402 MHz

Frequency	Rx S.	A/TR	Tx	SG	Tx	Tx	Result		Limit	Margin		Horizontal		Vertical		Remarks
							(ERP) <	=1GHz,	(ERP) <=1GHz,							
	Rea	ding	Rea	ding	Cable	Ant.	(EIRP)	>1GHz	(EIRP) >1GHz			Rx Ant.	Turn	Rx Ant.	Turn	
	[dB	uV]	[dE	Bm]	Loss	Gain	[dE	Bm]	[dBm]	[dB]		Height	Table	Height	Table	
[MHz]	HOR	VER	HOR	VER	[dB]	[dBi]	HOR	VER		HOR	VER	[cm]	[deg.]	[cm]	[deg.]	
4804.00	50.4	51.2	-49.2	-48.6	6.0	11.9	-43.3	-42.7	-30.0	13.3	12.7	205	175	143	288	
7206.00	NS	NS	-	-	-	-	-	-	-30.0	-	-	-	-	-	-	
9608.00	NS	NS	-	-	-	-	-	-	-30.0	-	-	-	-	-	-	
12010.00	NS	NS	-	-	-	-	-	-	-30.0	-	-	-	-	-	-	

Below 1 GHz: Calculation Result = SG Reading - Tx Cable Loss + Tx Antenna Gain - 2.15,

Above 1 GHz: Calculation Result = SG Reading - Tx Cable Loss + Tx Antenna Gain

Rx-ANTENNA : Biconical Antenna(25 MHz - 200 MHz), Logperiodic Antenna(200 MHz - 1000 MHz), Horn Antenna(1 GHz - 12.75 GHz) Tx-ANTENNA : 120 MHz tuned Dipole Antenna(30 MHz - 120 MHz), Dipole Antenna(120 MHz - 1000 MHz), Horn Antenna(1 GHz - 12.75 GHz)

Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

NS: No signal detect.

 $Detector: \\ Below 1~GHz: Spectrum~Analyzer~RMS~Average~(RBW: 100~kHz~/~VBW: 300~kHz)$

Above 1 GHz: Spectrum Analyzer RMS Average (RBW: 1 MHz / VBW: 3 MHz)

2480 MHz

Frequency	Rx S	A/TR	Tx	SG	Tx	Tx	Re	sult	Limit	Ma	rgin	Horiz	Horizontal		tical	Remarks
							(ERP) <	≔1GHz,	(ERP) <=1GHz,							
	Rea	ding	Rea	ding	Cable	Ant.	(EIRP)	>1GHz	(EIRP) >1GHz			Rx Ant.	Turn	Rx Ant.	Turn	
	[dB	uV]	[dE	3m]	Loss	Gain	[dF	Bm]	[dBm]	[d	B]	Height	Table	Height	Table	
[MHz]	HOR	VER	HOR	VER	[dB]	[dBi]	HOR	VER		HOR	VER	[cm]	[deg.]	[cm]	[deg.]	
4960.00	47.2	46.1	-52.6	-54.1	6.1	12.3	-46.4	-47.9	-30.0	16.4	17.9	197	169	173	294	
7440.00	NS	NS	-	-	-	-	-	-	-30.0	-	-	-	-	-	-	
9920.00	NS	NS	-	-	-	-	-	-	-30.0	-	-	-	-	-	-	
12400.00	NS	NS	-	-	-	-	-	-	-30.0	-	-	-	-	-	-	

Below 1GHz: Calculation Result = SG Reading - Tx Cable Loss + Tx Antenna Gain - 2.15,

Above 1GHz: Calculation Result = SG Reading - Tx Cable Loss + Tx Antenna Gain

Rx-ANTENNA: Biconical Antenna(25 MHz - 200 MHz), Logperiodic Antenna(200 MHz - 1000 MHz), Horn Antenna(1 GHz - 12.75 GHz)
Tx-ANTENNA: 120 MHz tuned Dipole Antenna(30 MHz - 120 MHz), Dipole Antenna(120 MHz - 1000 MHz), Horn Antenna(1 GHz - 12.75 GHz)

Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

NS: No signal detect.

 $Detector: \\ Below 1~GHz: Spectrum~Analyzer~RMS~Average~(RBW: 100~kHz~/~VBW: 300~kHz)$

Above 1 GHz: Spectrum Analyzer RMS Average (RBW: 1 MHz / VBW: 3 MHz)

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 12903635H-A Test report No. Page : 20 of 26 **Issued date** : June 26, 2019

Receiver spurious emissions (Radiated)

Report No. 12903635H Test place Ise EMC Lab.

Semi Anechoic Chamber No.1

June 14, 2019 Temperature / Humidity 24 deg. C / 67 % RH Takafumi Noguchi Engineer BT LE Rx Mode

2402 MHz

F	requency	Rx S.	A/TR	Tx	SG	Tx	Tx	Re	sult	Limit	Ma	rgin	Horiz	zontal	Ver	tical	Remarks
								(ERP) <=1GHz,		(ERP) <=1GHz,							
		Rea	ding	Rea	ding	Cable	Ant.	(EIRP) >1 GHz		(EIRP) >1GHz			Rx Ant.	Turn	Rx Ant.	Turn	
		[dB	uV]	[dE	Bm]	Loss	Gain	[dE	Bm]	× /		Height	Table	Height	Table		
	[MHz]	HOR	VER	HOR	VER	[dB]	[dBi]	HOR	VER		HOR	VER	[cm]	[deg.]	[cm]	[deg.]	
	52.98	-	50.1	-	-34.0	2.0	-28.8	-	-67.0	-57.0	-	10.0	-	-	100	67	
	80.29	-	49.8	-	-46.7	2.5	-19.0	-	-70.4	-57.0	-	13.4	-	-	100	199	
	2402.00	NS	NS	-	-	-	-	-	-	-47.0	-	-	-	-	-	-	

 $Below\ 1GHz:\ Calculation\ Result = SG\ Reading\ \textbf{-}\ Tx\ Cable\ Loss\ +\ Tx\ Antenna\ Gain\ \textbf{-}\ 2.15,$

Above 1GHz: Calculation Result = SG Reading - Tx Cable Loss + Tx Antenna Gain

Rx-ANTENNA: Biconical Antenna(25 MHz - 200 MHz), Logperiodic Antenna(200 MHz - 1000 MHz), Horn Antenna(1 GHz - 12.75 GHz)

Tx-ANTENNA: 120 MHz tuned Dipole Antenna(30 MHz - 120 MHz), Dipole Antenna(120 MHz - 1000 MHz), Horn Antenna(1 GHz - 12.75 GHz)

Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

No signal detect.

Detector: Below 1 GHz: Spectrum Analyzer RMS Average (RBW: 100 kHz / VBW: 300 kHz)

Above 1 GHz: Spectrum Analyzer RMS Average (RBW: 1 MHz / VBW: 3 MHz)

2480 MHz

Frequency	Rx S.	A/TR	Tx	SG	Tx	Tx	Result		Limit	Margin		gin Horizo		rizontal Ver		Remarks
							$(ERP) \le 1GHz,$		$(ERP) \leq 1GHz,$							
	Rea	ding	Rea	ding	Cable	Ant.	(EIRP) >1 GHz		(EIRP) >1GHz			Rx Ant.	Turn	Rx Ant.	Turn	
	[dB	uV]	[dE	Bm]	Loss	Gain	[dI	Bm]	` '		Height	Table	Height	Table		
[MHz]	HOR	VER	HOR	VER	[dB]	[dBi]	HOR	VER		HOR	VER	[cm]	[deg.]	[cm]	[deg.]	
52.98	-	50.0	-	-34.1	2.0	-28.8	-	-67.1	-57.0	-	10.1	-	-	100	64	
80.29	-	49.8	-	-46.7	2.5	-19.0	-	-70.4	-57.0	-	13.4	-	-	100	195	
2480.00	NS	NS	-	-	-	-	-	-	-47.0	-	-	-	-	-		

Below 1GHz: Calculation Result = SG Reading - Tx Cable Loss + Tx Antenna Gain - 2.15,

Above 1GHz: Calculation Result = SG Reading - Tx Cable Loss + Tx Antenna Gain

Rx-ANTENNA: Biconical Antenna(25 MHz - 200 MHz), Logperiodic Antenna(200 MHz - 1000 MHz), Horn Antenna(1 GHz - 12.75 GHz) Tx-ANTENNA: 120 MHz tuned Dipole Antenna(30 MHz - 120 MHz), Dipole Antenna(120 MHz - 1000 MHz), Horn Antenna(1 GHz - 12.75 GHz)

Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

No signal detect.

Below 1 GHz: Spectrum Analyzer RMS Average (RBW: 100 kHz / VBW: 300 kHz) Detector:

Above 1 GHz: Spectrum Analyzer RMS Average (RBW: 1 MHz / VBW: 3 MHz)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12903635H-A Page : 21 of 26 Issued date : June 26, 2019

Receiver Blocking

Report No. 12903635H

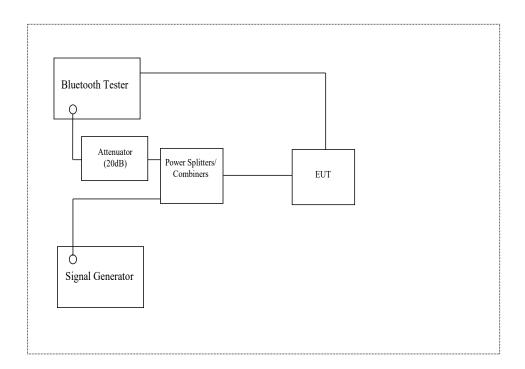
Test place Ise EMC Lab. No.4 Measurement Room

Date June 17, 2019
Temperature / Humidity 23 deg. C / 39 % RH
Engineer Yuta Moriya
Mode Tx BT LE

Wanted signal mean power from companion device	Measured Receiver Sensitivity (dBm)		
(dBm)	Lowest Channel	Highest Channel	
Pmin	-97.75	-97.75	
Pmin + 6 dB	-91.75	-91.75	

Receiver Category 2 equipment

Receiver Catego	ory z equipment				
Operating Channel	Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm)*1)	Result PER (%)	Limit PER (%)
Lowest Channel	$P_{min} + 6 dB$	2380	-49	0.87	
		2503.5		1.07	≦ 10
	$P_{min} + 6 dB$	2300	-39	0.87	≡10
		2583.5	-39	1.01	
Highest Channel	$P_{min} + 6 dB$	2380	-49	0.99	
		2503.5	-49	0.91	≦ 10
	$P_{min} + 6 dB$	2300	-39	0.86	≟ 10
		2583.5		0.98	


^{*}Pmin is the minimum level of wanted signal (in dBm) required to meet the minimum performance criterion a PER less than or equal to 10 % in the absence of any blocking signal.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} Blocking signal power was adjusted by assumed antenna gain 8.05 dBi (Product antenna gain +3 dB margin) since it was more severe condition.

Test report No. : 12903635H-A Page : 22 of 26 Issued date : June 26, 2019

CONDUCTED METHODS SYSTEM BLOCK DIAGRAM of Receiver Blocking

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12903635H-A Page : 23 of 26 Issued date : June 26, 2019

APPENDIX 2: Test instruments

Test Instruments

Test item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Calibration Due Date	Cal Int
RE	141950	EMI Test Receiver	Rohde & Schwarz	ESU26	100412	06/15/2018	06/30/2019	12
RE	178648	EMI measurement program	TSJ	TEPTO-DV	-	-	-	-
RE	141350	Coaxial Cable	Suhner/storm/Agilent /TSJ	-	-	06/04/2018	06/30/2019	12
RE	141213	Attenuator(6dB)	Weinschel Corp	2	BK7971	11/05/2018	11/30/2019	12
RE	141576	Pre Amplifier	AGILENT	8449B	3008A01671	02/08/2019	02/29/2020	12
RE	141393	Microwave Cable	Junkosha	MWX221	1604S254(1 m) / 1608S088(5 m)	08/08/2018	08/31/2019	12
RE	141511	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	253	04/12/2019	04/30/2020	12
RE	141268	Logbicon	Schwarzbeck	VULB 9168	727	09/13/2018	09/30/2019	12
RE	142226	Measure	KOMELON	KMC-36	-	_	-	-
RE	141585	Pre Amplifier	MITEQ	MLA-10K01-B01-35	1237616	02/08/2019	02/29/2020	12
RE	141998	AC1_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 10m	DA-06881	06/18/2018	06/30/2020	24
RE	141566	Thermo-Hygrometer	CUSTOM	CTH-201	A08Q26	01/11/2019	01/31/2020	12
RE	141296	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	002	09/19/2018	09/30/2019	12
RE	141218	Coaxial Cable	UL Japan	-	-	07/19/2018	07/31/2019	12
RE	141464	Dipole Antenna	Schwarzbeck	VHAP	1018	10/23/2018	10/31/2019	12
RE	141967	Signal Generator	Rohde & Schwarz	SMT02	51400043	08/07/2018	08/31/2019	12
RE	141409	Microwave Cable(1-30GHz)	Huber+Suhner	SF103/11PC3.5-31/ 11PC3.5-31/8.0m	54308/3	01/10/2019	01/31/2020	12
RE	141514	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	1611	05/16/2019	05/31/2020	12
RE	141896	Signal Generator	Rohde & Schwarz	SMR40	100137	06/04/2019	06/30/2020	12
RE	141530	Digital Tester	Fluke Corporation	FLUKE 26-3	78030621	08/21/2018	08/31/2019	12
RB	155908	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	140481	-	-	-
RB	141321	Microwave Cable	Junkosha	MWX221	1409S493	03/26/2019	03/31/2020	12
RB	141326	Microwave Cable	Suhner	SUCOFLEX101	2874(1m) / 2877(5m)	03/04/2019	03/31/2020	12
RB	141821	Power Splitters/Combiners	Mini-Circuit	ZFSC-2-10G	326	09/18/2018	09/30/2019	12
RB	141903	Spectrum Analyzer	AGILENT	E4440A	MY46186390	09/20/2018	09/30/2019	12
RB	141905	Signal Generator	Rohde & Schwarz	SML03	100332	09/13/2018	09/30/2019	12
RB	141174	Attenuator(20dB)(above1 GHz)	HIROSE ELECTRIC CO.,LTD.	AT-120	901247	01/10/2019	01/31/2020	12
AT/RB	141224	Microwave Cable	Junkosha	MWX221	1409S496	03/05/2019	03/31/2020	12
ΑT	141902	Spectrum Analyzer	AGILENT	E4440A	MY46187105	10/04/2018	10/31/2019	12
ΑT	141809	Power Meter	ANRITSU	ML2495A	825002	05/16/2019	05/31/2020	12
ΑT	141830	Power sensor	ANRITSU	MA2411B	738285	05/16/2019	05/31/2020	12
AT	141429	Temperature and Humidity Chamber	TABAI ESPEC	PL-2KP	14015723	08/08/2018	08/31/2019	12
AT	141561	Thermo-Hygrometer	CUSTOM	CTH-201	1401	01/11/2019	01/31/2020	12
AT	141420	Attenuator	Weinschel Associates	WA56-10	56100307	05/17/2019	05/31/2020	12

^{*}Hyphens for Last Calibration Date, Calibration Due Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test item:

AT: Antenna Terminal Conducted test (other than Receiver Blocking test)

RE: Radiated emission test **RB:** Receiver Blocking test

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12903635H-A Page : 24 of 26 Issued date : June 26, 2019

APPENDIX 3: Photographs of test setup

Radiated emission

Photo 1

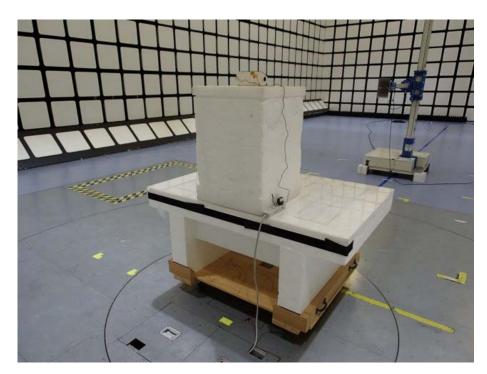


Photo 2

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12903635H-A
Page : 25 of 26
Issued date : June 26, 2019

Worst Case Position

Below 1 GHz(Horizontal: X-axis / Vertical: X-axis) Above 1 GHz(Horizontal: X-axis / Vertical: Y-axis)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12903635H-A Page : 26 of 26 Issued date : June 26, 2019

Receiver Blocking

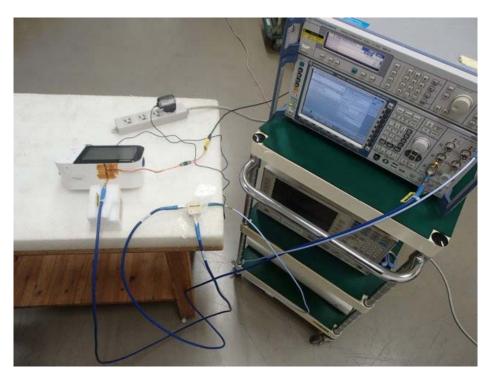


Photo 1

End of Report

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN